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A geometric connection between quantum mechanics and classical mechanics is de-
scribed and an operator version of the Poisson bracket is developed.
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Quantum mechanics owes much to the development and presence of the exten-
sive existing theoretical framework which has been created for classical mechanics
(Abraham and Marsden, 1978). This important influence is yet to be fully exposed.
It has been of continuing interest to examine the correspondence between these
two formalisms, and to develop and clarify the overlapping common elements. It
can be imagined that by extending the structure of classical mechanics, many of
the essential features of quantum mechanics can be accounted for. It will be shown
here that this correspondence can be enlarged and deepened by slightly modifying
and enlarging ideas which already exist in classical mechanics. The setting for
classical mechanics is a classical phase space, and it is natural to define observ-
ables for a system as real-valued functions which are defined and are regular on
that phase space. From the physical point of view, what is of interest is examining
the sets of transformations of the states which do not change the basic underly-
ing structure, or nature of the system. These obviously include, for example, time
evolution or a change of inertial frame of reference. In quantum mechanics, one
is analogously interested in the unitary transformations of the underlying Hilbert
space. These are the basic automorphisms which are of interest in the new point
of view.

The usefulness of working within the formalism of classical mechanics is
that there is already a well developed underlying geometric formalism. If it could
be applied more generally, it would be of use to quantum theory as well. Here we
would like to illustrate that by enlarging the formalism and structure of classical
mechanics, one can parallel corresponding elements of quantum mechanics. A
more generalized form of classical mechanics can then accomodate many aspects
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of quantum mechanics. The main advantage of doing this is that a very unified
view of both classical and quantum mechanics emerges.

In the classical theory, the dynamics and evolution of a system takes place in
a phase space, and this leads to defining a particular observable as a real-valued
regular function on that space. The space of statesS of a quantum system is the
projective space of a complex separable Hilbert spaceH, that is, a stateM in S
can be identified with a nonzero vector|M〉 inH, defined up to a complex factor.
When the Hilbert space has finite complex dimensionn, as a real space, it has then
an even dimension of 2n. The normalization condition reduces this dimension by
one. Because of phase arbitrariness, the dimension is again reduced by one. Thus
the complex projective space also has even dimension, a necessary condition for
it to carry a Poisson bracket structure.

Begin by considering a given quantum system over some orthonormal basis,
which we call{|ϕk〉}, of its Hilbert space of states. Given a state vector|ψ〉, it can
be expanded in terms of the elements of this basis set

|ψ〉 =
∑

k

αk|ϕk〉, (1)

and the coefficientsαk are of course complex valued. They will be written in terms
of their real and imaginary parts normalized in the following way

αk = 1√
2h

(xk + i pk). (2)

As will be seen, the notation here is suggestive. In the case in which the Hilbert
space has finite dimension, or by simply truncating the expression for the state
|ψ〉, the set of components (xk, pk)N

k=1 can be used to construct a local coordinate
system on a manifold for the space of states. In fact, even in the infinite dimensional
case, the set of components can be used for the same function, that is construct-
ing an infinite dimensional manifold. We prefer to restrict ourselves to the finite
dimensional case here. In this way, the set of (xk, pk) provides the space of states
S with a smooth manifold structure in an intrinsic way.

At this point, additional structure can be defined on this manifold that one
would find in a usual classical system. In terms of these coordinates (xk, pk), a
symplectic form can be defined in terms of (xk, pk) as follows

ω =
∑

i

dxi ∧ dpi . (3)

In terms of these coordinates, this form is a symplectic form on the space of statesS,
thus the coordinates are canonical in the sense of the Darboux theorem (Abraham
and Marsden, 1978). Moreover, any symplectic form is the negative imaginary
part of some Hermitian inner product. This follows from a theorem which states
that ifH is a real Hilbert space andB a skew symmetric weakly nondegenerate
bilinear form onH, then there exists a complex structureJ onH and a real inner
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productS such thats(x, y) = −B(J x, y). Settingh(x, y) = s(x, y)− i B(x, y), h
is a hermitian inner product (Abraham and Marsden, 1978). Thus any symplectic
form is the negative imaginary part of some Hermitian inner product. We can then
identify

ω(V, W) = −Im〈V, W〉. (4)

This is of course invariant under the multiplication of|V〉 and |W〉 by a com-
mon phase factor. Henceω is for every U ∈ S a well-defined intrinsic map
TUS × TUS → R, and the conditiondω = 0 is exactly what is required to make
Poisson brackets into a Lie algebra (Marsden and Ratiu, 1994; von Westenholz,
1981). The Hilbert space structure ofH induces on the projective spaceS the
structure of a symplectic manifold withS connected. The observables are those
real-valued smooth functions onS whose canonical transformations they generate
are automorphisms ofS, when considered as the projective space ofH.

In this way a direct correspondence between a quantum description and a
classical description has been produced (Heslot, 1983, 1985). The space of states
S, of a physical system in classical mechanics is the system’s phase space. This
space is an even-dimensional smooth manifold provided with a nondegenerate
and closed two form, or in other words, a symplectic structure. This symplectic
structure has a physical meaning. Transformations which do not modify the nature
of the system are precisely the automorphisms, orω preserving diffeomorphisms,
which are usually referred to as canonical.

The Poisson bracket forf andg in the vector space of real valued smooth
functions on the space of statesS can be defined by{ f, g} = ω−1(d f, dg). Also this
space is a Lie algebra under the Poisson bracket such that [X f , Xg] = −X{ f,g}. In
the classical sense, the elements of this space are considered to be the observables
of the system. Thus we have

d

dt
( f ◦ γt ) = { f ◦ γt , H} = { f, H} ◦ γt ,

whereγt is the flow of XH and f ∈ F(P). This equation is often written more
compactly aṡf = { f, H} and is called the equation of motion in Poisson bracket
form. Transformations which do not change the structure of the system preserve
the Poisson bracket and are referred to as automorphisms of that basic structure
(Bracken, 1996). Thus, given a transformationP on the space of states, this induces
a transformation on the observables. The transformationP is an automorphism
on the state space with its associated Poisson bracket structure, if and only if,
for the observablesf andh, P({ f, h}) = {P f, Ph}, andP is called a canonical
transformation. In this framework, observables are defined as real-valued regular
functions of the state whose canonical transformations they generate and are au-
tomorphisms of the whole structure of the space of states. The automorphisms of
quantum mechanics are unitary transformations.
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For any state|ψ〉, in terms of the basis|ϕk〉, we can expand|ψ〉 as in (1). Let us
show that the real and imaginary parts of the coefficientsαk in (1) satisfy Hamilton’s
equations. The motion of the quantum system is determined by Schr¨odinger’s
equation (Messiah, 1958)

i h
d

dt
|ψ〉 = Ĥ |ψ〉. (5)

Schrödinger’s equation will become a set of equations for theαk, and from this,
Schrödinger’s equation may be written as a set of equations for the real and imag-
inary parts of theak, namely, thexk and pk. Suppose〈ψ |ψ〉 = 1 then we imme-
diately have the following constraint on thexk and pk as follows∑

k

x2
k + p2

k = 2h.

Now define the functionH (xk, pk) = 2〈ψ |Ĥ |ψ〉. The Schr¨odinger equation takes
the form

i h
d

dt

∑
k

1√
2h

(xk + i pk)|ϕk〉 = Ĥ |ψ〉. (6)

Contracting on the left with the vector〈ψ |, we obtain

h
∑

m

〈ϕm|α∗m
d

dt

∑
k

1√
2h

(xk + i pk)|ϕk〉 = 〈ψ |Ĥ |ψ〉.

This reduces to a quantity which depends on thexk and pk,

i
∑

k

(xk − i pk)

(
dxk

dt
+ i

dpk

dt

)
= H (xk, pk).

Expanding this out, we obtain∑
k

(
i xk

dxk

dt
− xk

dpk

dt
+ pk

dxk

dt
+ i pk

dpk

dt

)
= H (xk, pk). (7)

Taking the complex conjugate of (7) and using the fact that the right-hand side is
real, then upon adding this to (7), we obtain

H =
∑

k

(
−xk

dpk

dt
+ pk

dxk

dt

)
. (8)

Differentiating both sides of (8) with respect toxk and thenpk, respectively, the
following pair of equations in terms ofxk and pk are found

∂H

∂xk
= −dpk

dt
,

∂H

∂pk
= dxk

dt
. (9)
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This analysis has produced a set of equations which has the same form as the
classical Hamilton’s equations of motion, if thexk play the role of spacial variables
and thepk play the role of the momentum variables.

Expressions for the derivatives of the expectation values of the operator of
an observable with respect to the state|ψ〉 can also be derived. Since the func-
tion obtained from the expectation value will depend onxk andpk, so too will the
derivatives. Consider an operatorR̂which is the operator of some observable, such
as the Hamiltonian operator̂H , for example, introduced in the Schr¨odinger equa-
tion (5). Then, defining the quantitiesτkl = 〈ϕk|R̂|ϕl 〉 andR(xk, pk) = 〈ψ |R̂|ψ〉,
we have

〈ψ |R̂|ψ〉 =
∑
k,l

τklα
∗
kαl =

∑
k,l

τkl

(
xkxl − i xl pk + i xk pl + pk pl

2h

)

=
∑
k,l

(
xkxl + pk pl + i (−xl pk + xk pl )

2h

)
τkl . (10)

Differentiate now the expression in (10) with respect to the variable pk,

∂

∂pk
〈ψ |R̂|ψ〉 = 1

2h

∑
m,l

(δmkpl + pmδlk + i (xmδkl − xl δmk))τml

= 1

2h

∑
l

(pl τkl + pl τlk + i (xl τlk − xl τkl))

=
∑

l

(
τkl + τlk

2h
pl + i

τlk − τkl

2h
xl

)
. (11)

Differentiating (9) with respect toxk, we obtain

∂

∂xk
〈ψ |R̂|ψ〉 = 1

2h

∑
m,l

(δmkxl + xmδlk − i pmδlk + i pl δmk)τml

= 1

2h

∑
l

(xl τkl + xl τlk + i (pl τkl − pl τlk))

=
∑

l

(
τkl + τlk

2h
xl + i

τkl − τlk
2h

pl

)
. (12)

The fact that an operator̂R is a self-adjoint operator implies that, in terms of the
matrix elements,τ ∗kl = τlk . This fact can be used to write anyτkl as the sum of its
real part and its imaginary part,

τkl = τkl + τlk
2

+ i
τkl − τlk

2
. (13)
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The derivatives in (11) and (12) can then be written in the form

∂R

∂xk
=
(

2

h

)1/2

Re

(∑
l

τklαl

)
,

∂R

∂pk
=
(

2

h

)1/2

Im

(∑
l

τklαl

)
. (14)

It has been shown that an observable in the classical sense can be produced from
an operator, which can be written explicitly asR(xk, pk) = 〈ψ |R̂|ψ〉. There is a
natural correspondence between operators and observables which is linear as is
addition and product by a scalar of observables. This correspondence can also
be extended to the Poisson bracket. The Poisson bracket can also be represented
formally in terms of operators using (14). The Poisson bracket of the real functions
f, g is given by

{ f, g} =
∑

k

(
∂ f

∂xk

∂g

∂pk
− ∂ f

∂pk

∂g

∂xk

)
.

Substituting the derivatives in (14) and the identityz∗w − zw∗ = 2i (Re zIm w−
Re w Im z), which holds for any complexz, w, the Poisson bracket of the two
observablesf, g can be written in the following way

{ f, g} = 2

h

∑
k

(
Re
∑

l

fklαl Im
∑

j

gk jα j − Re
∑

j

gk jα j Im
∑

l

fklαl

)

= 1

i h

∑
k

((∑
l

fklαl

)∗ (∑
j

gk jα j

)
−
(∑

l

fklαl

)(∑
j

gk jα j

)∗)

= 1

i h

∑
k,l , j

( flkgk jα
∗
l α j − fkl gjkαlα

∗
j )

= 1

i h

∑
l , j

(( f̂ ĝ)l j α
∗
l α j − (ĝ f̂ ) j l αlα

∗
j )

= 1

i h

∑
l , j

[ f̂ , ĝ]l j α
∗
l α j = 1

i h
〈ψ |[ f̂ , ĝ]|ψ〉,

where [f̂ , ĝ] = f̂ ĝ− ĝ f̂ is the commutator. An operator version of the Poisson
bracket has been produced which can be summarized in the form

{ f, g} = 1

i h
[ f̂ , ĝ]. (15)

Thus, we have seen that as the imaginary part of the scalar product is antisymmetric,
it may be considered as an antisymmetric covariant tensor which if written in
general coordinates takes the formω =∑σ,τ ωστdxσ

⊗
dxτ , where thexσ are

generic coordinates on the complex projective space. There is an association with
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a Poisson bracket structure through

{ f, g} =
∑
σ,τ

ωστ
∂ f

∂xσ
∂g

∂xτ
,

whereωστ is the inverse ofωστ . The real part of the scalar product induces a metric
in the usual sense, that is, a symmetric covariant tensorg =∑στ gστdxσ

⊗
dxτ .

Thus there exists a way of placing an intrinsic curvature on the space of states in
this formalism.

Suppose we subject theαk to a unitary transformation̂U such thatUkl = 〈ϕk |
Û | ϕl 〉, then ifUkl = Qkl + i Pkl the transformed coordinates satisfy the bracket

{x′k, p′k} =
{∑

j

Qk j x j − Pkj pj ,
∑

m

Qkj pj − Pkj x j ,

}
=
∑

j

(Qkj Ql j + Pkj Pl j )

However,〈ϕk | ÛÛ † | ϕl 〉 = δkl =
∑

j Uk jU ∗l j =
∑

j (Qkj + i Pk j )(Ql j− i Pl j ) =∑
j (Qkj Ql j + Pkj Pl j )+ i (Pkj Ql j − Qkj Pl j ) =

∑
j (Qkj Ql j + Pkj Pl j ). Thus, Û

preserves Poisson brackets and is canonical. To conclude, it has been shown that
the (xk, pk) constitute a system of canonical coordinates and that Schrˆodinger’s
equation is a special case of Hamilton’s equations.
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